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Abstract

We consider the propagation of acoustic waves in Si-based heterojunctions (HJs), quantum wells (QWs) and superlattices
(SLs) grown in arbitrary directions, and present a general formalism for obtaining wave velocities, selection rules, and
efficiency of Raman scattering (RS) and Brillouin scattering (BS) by folded acoustic-phonons. Results based on nine

different directions for the phonon wavevector are tabulated.

1. Introduction

The optical properties of SLs and quantum wells,
grown on substrates with orientations other than
(100), have been studied extensively in III-V com-
pounds, especially in GaAs/AlAs systems (e.g.
[012], [331], [311], Ref. [1]). The increased anisotro-
py introduces possibilities for new physical phenom-
ena and device applications. The recent construction
of low-index facets in Si, such as (111) [2], (113),
(114) [3], leaves much to be expected also for low-
index Si-based systems [4]. In anticipation of grow-
ing interest in such systems grown along arbitrary
directions, we consider the propagation of acoustic
waves and present a general formalism for obtaining
wave velocities, selection rules, and efficiencies for
Raman and Brillouin scattering by folded acoustic
phonons.

2. Velocities of acoustic waves in arbitrary direc-
tions

The propagation of acoustic waves in SLs is
dictated by the propagation of acoustic waves in the
parent bulk materials. The analytic formula relating
the wave velocity in a given direction to the elastic
constants of the bulk solid is obtained from the
solution of the mode secular equation [5]

where ¢, ,,,, is the component of the elastic stiffness
tensor, p is the mass density of the medium, v the
phase velocity, 8,, the Kronecker delta, and s the
unit vector in the direction of propagation which is
also the direction of the wavevector q, ie., q =gs.
Eq. (1) is valid in any system of axes x}xjxj}, as
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well as in the system x,x,x; of crystallographic
axes (100), provided the rotated components of
Cppyp AT known. In order to solve (1) for arbitrary s,
we choose xj ls; the axes x|, x) are conveniently
chosen to complete a right-handed orthonormal sys-
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tem with unit vectors %}, %), %%5. This is the q-
adapted system of axes. It is assumed that the

From (2), the following symmetric fourth-rank tensor
is easily constructed

transformation matrix which takes x, x, x5 to x} x, x5

is known in the form Topvp = WL L, + mym, m,m, +myn, n,n

whvlp vl
=T;=T, (3)

where i and j are the suppressed indices for (Au)
R=|lL m n (2) and (vp) [6]. Then [7],
C’ij = ClA/J.Vp = C/\,pr + C(T;\,uvp - r\?.avp) (4)

where ¢=c; — ¢, —2cy, is the anisotropy factor,
and Ti‘} equals one for i=j=1, 2, 3 and zero

where [,, m,, n, (A =1, 2, 3) represent the direction
cosines of x) relative to x;, x,, Xx,, respectively.

Table 1
Rotated stiffness coefficients c; ] of cubic crystals, according to Eq. (5). The rotation matrices (unnormalized) are shown in the left column.
In all cases the third row of the matrix corresponds to the direction of q. The anisotropy factor is ¢ =c¢;; — ¢, —2cy4

L m
L my cks Ciy Cis ch
Iy my ns
1 0 0
0 1 0 Cas Caq 0 C1q
0 0 1
0 0 1
1 1 0 Caa castc/2 0 ey —c¢/2
1 1 0
0 0 1 -
1 2 0 Cyy C4q +8¢/25 6¢c/25 ¢ —8¢/25
2 1 0
0 0 1
1 3 0 Cas C4s+9¢/50 6c/25 ¢y —9¢/50
31 0
1 10
1 1 3 Cyq+c/3 Cyat+c/3 0 ¢ —2¢/3
1 1 1
0 1 1
1 1 1 Cyy T /6 castc/3 0 ¢y —c/2
2 1 1
110 de

a Cqs +4c/9 Cyq +4c/27 ¢ — 16¢/27
é ; éir 44 / 44 / 27&— 11 /
0 1 1 48¢
5 Cqq +c/11 C4q +27¢/121 - ¢y —38¢/121
g i ? 44 4 44 / 121‘/2— 1 /
1 10 48¢

3 C +9c¢/19 C4q +27¢/361 ¢y — 198¢ /361
2 ST g
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otherwise. It is emphasized that in this form, Eq. (4)
holds only in cubic classes, for fourth-rank tensors
with three independent components (for other situa-
tions see [7]). Since &5 = [I;m4n,] is chosen along s
we have s} =5, =0, sy = 1, and Eq. (1) becomes

ro_ 2 / !
Cs5 — PV Csq Cs3
’ r_ 2 ’ _
€45 Cag = PY ¢ =0 (5)
! ’ ro_ 2
Cas Cag C33 — PV

Diagonalization of Eq. (5) yields the three eigenval-
ues (wave velocities) and the corresponding eigen-
vectors (polarizations) relative to x{xhx5. The
amount of computation required for diagonalizing
(5) for low-index directions is substantially reduced

Table 2

in comparison with the situation in the unrotated
system X, X, X3,

The necessary values of ¢;; for nine directions of
q are given in Table 1. All directions q considered
here are of the form [ pg0], [ pgql or [ ppql. In all
these cases, the axes xi, x, (l.e., the first and second
row of each matrix, respectively) are such that cf, =
¢s3 =0, and for this reason they are not included in
the table (for different choices of the two axes this
may not be true, however). The eigenvalues ( pv?)
for these situations are obtained from Eq. (5) and are
presented in Table 2 [8]; since ¢f, = ¢§; =0, there is
at least one purely transverse (TA) mode polarized
along x; according to Eq. (5); the remaining two
modes are, in general, quasi-longitudinal (QLA) and
quasi-transverse (QTA), i.e., their eigenvectors are

Sound velocities in cubic crystals for different directions of g (first column, unnormalized). The unnormalized rotation matrices are as in the
first column of Table 1. For TA and LA modes, the entries (c,y, etc.) are eigenvalues of the corresponding mode secular equation, and the
superscript directions are the corresponding mode eigenvectors (polarizations). For quasi-LA and quasi-TA modes, designated by
QLA /QTA, the superscript directions do not coincide with the eigenvectors; the entries designate the two pu? eigenvalues, corresponding

to 3 D. p and g stand for normalized direction cosines of q 2

q P’-’2

001 TAIOL ¢ TAOWL ¢ LAPOI ¢,

110 TAOM: ¢ TAWO: (o =00 /2 LAM: (e + ¢y +2044)/2

111 TAMY: (e — ey +ega)/3 TAM: () = cpp +cyg) /3 LAV (o) 4+ 205 +4009)/3
211 TALHL () —¢)p +4cyy) /6

QLARM /QTATM: (5¢;, + ¢,y +8cyy £D)/12 D= \/(—30“ deptdeg) 3200 oV

210 TAIL: ¢,

QLA /QTAIY: (e + 54y £ D)/10 D =10(cy, = 4g)? + 16(cy, + c4y)?

221 TAUTOL: (4e), = deyy + c40) /9

QLAP2/QTAIA: (5¢,, +4cp, + 17, £ D) /18 D= \/(30” ey g ) F32( 0 + oy’

310 TAH: ¢,

QLA QAN (e, + 5, £D)/10 D =16(cy; = c4e)’ +9(eps  40)?

311 TALT: (¢ = ¢pp +9¢,)/11

QLAPBMI/QTAP2): (10¢,, +¢pp + 1344 £ D)/22 D= \/(sql — e = 9¢u) + 7201+ ege )’

331 TATL (9¢,, = 9¢;, + c40) /19

QLAP1/QTAINEL: (10¢,, + 9¢,, + 3¢y £ D)/38 D= \/(80” + 00+ g ) + T2(epn + cuy )

pq0 TANOL: Cas

, > -
QLA/QTA: (¢;, + ¢, £D)/2 D= \/( pPP=a*) (e - ca )’ 43 (e )

paq AL cas + (cpy —612—2044)512

QLAIP#41 /QTAR#P): [(p2 + g%)e), + gPciy + 2 = pPey, + D1 /2

B
D= \/[(pl -¢*)ey = dlep _P2044] +8p%¢%(cpy +ca )

The last two rows refer to the general cases of { pg0] and [ pgq]. Contrary to all other cases, these two unit vectors are normalized, i.e.,

VPt +q>=1, and yp® + 2q% = 1, respectively.
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somewhere between x, and xj. In the event that
iy = 0, the remaining two modes are polarized along
x, and x}, and are TA and LA, respectively. This is
the case of high-symmetry directions.

Repeating the above procedure twice, once for
each constituent bulk material 1 and 2, yields v, and
v, and the corresponding eigenvectors. The velocity
of propagating folded acoustic modes in SLs (layer
thicknesses d,, d,, total thickness d) is equal to
vv,d/(v,d, + v,d,) for the same direction of q.
The eigenvectors are the same as for the bulk materi-
als.

3. Selection rules

In the elastic approximation, the selection rules
for RS by folded acoustic phonons in SLs are those
of BS from the constituent crystals in bulk form. The
latter are also applicable to HJs and QWs. In BS, the
long wavelength acoustic modes produce strains
eyp(r,t) which, in turn, modulate the dielectric con-
stant through the elasto-optical effect. Specifically,
an acoustic mode with frequency w and wavevector
q induces a time dependent change 8e&(r,t) in the
dielectric tensor which, for small strains, can be
written as [6]

1
—?56/\#(1‘,[) =p/\p.vpevp(r’t) (6)

where p,,,, are the Pockels elasto-optical coeffi-
cients. The strains e,,(r,t) are related to the atomic
displacements U,(x,?) by

U, (r,t) N aUp(r,Z)}

evp(r’t) = %

7
dx, ox, O

All quantities in (6) and (7), e.g. p,;;; and e, must
be transformed to the x| x;x} system. The Pockels
coefficients for the -V, II-VI, and diamond-type
crystals transform exactly as the elastic stiffness
coefficients ¢}, [set p for ¢ everywhere in Eq. (4)].
On the other hand, U'(x’,#) can be written in the
form of a plane wave

U'(x',t) = Upexpi(q -1’ — wt)
=U'(r")exp( —iwt) (8)
Since £} |lq, namely q - r’ = gx}, the components of

U'(x') become u\(r') = uy,exp(igx}). Then, from
Eq. (7) and (8) we find the strain tensor in the
primed system

0 0
e€=ig| 0 0 (9)
uy  u, U
(Factors of 2 are necessary for the conversion 2e,,
=e; when v+ p, [6])

The BS intensity is proportional to |5€/\# , in the
elastic continuum model. The scattering selection
rules are obtained from the double product of Jde
with the incident (e') and scattered (e®) light polar-
ization unit vectors. The scattering efficiency for a
particular acoustic mode is proportional to
|e3 b€y, eLIz. In view of Eq. (9), the summation over
v, p in (6) leads to

| 2

Pis  Des DS P4 Do P
e~ Dhs P%s Uy + P P;m iy
Dss P34
Pis  DPes P
A (10)
P33

These matrices are analogous to the usual Raman
matrices for triply-degenerate Raman-and IR-active
optical phonons in the same class of materials; they
refer to x| x, x5, and so do the displacements u], i,
uy, with 2} [|q. Furthermore, the full symmetry of
T;;» Bq. (3), requires that Tys = Tyy, Ty = Tys, Ty =
T, =T, Ts3=T,5 and T,,=T,, with analogous
equalities for p"’s, ie., pg =pls, etc. Thus, the
number of pj; components are reduced to 12. Writ-
ten in the same way as the Raman matrices are
usually written, Eq. (10) becomes

! ! ! ! !’ !
P15 P Pss Pia Pas Das

Py Pas | P Py |
P1s P34
x4 xh
Pis Pis P
Py P |- (11)
P33

x5
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The 12 components can be further reduced after
the scattering geometry is fixed. As an example, we
treat the selection rules for backscattering geometry
along xy for the most general orientation of xj.
Conservation of momentum imposes that q || £5.
Therefore, the matrices of Eq. (11) can be used and
the three possible scattering configurations yield,
according to Eq. (11),

x5 x) xll)xls-'-PEs(”x’l) +p’14(l|x/2) ‘*’P’xs(”)"s)
x5 x) x’2)7c’3.'.p’14([|x’1) "'PES(”%) ‘*‘PQS(HXS)
x5 (x5 x5 ) X520 phs(llxy) + pag(llx) + ps(llx5)

Table 3

The 12 components are reduced to 7, and the
interpretation of Eq. (12) is the same as for RS: for
parallel light polarizations along x| (first row), three
acoustic modes, polarized along x|, x5, xj, are
allowed by symmetry. Their intensities are ~ | p)s|?,
| p’,4|2 and | p’13|2, respectively. The interpretation of
the remaining selection rules in Eq. (12) is similar.

The results described by Eq. (12) are now applied
to the nine orientations of Tables 1 and 2, with
q || x4. For all these cases, p's = phs = pys = pis =0
and the 7 components of Eq. (12) are reduced to 4.
These are computed and listed in Table 3. The

Rotated elasto-optical coefficients pj; of diamond- and zincblende-type crystals according to Eq. (13) and the rotation matrices
(unnormalized) shown in the left column. In all cases, the third row of the matrix corresponds to the direction of q. Additional coefficients
are required for applying the selection rules for the most general backscattering configuration, Eq. (12). These can be obtained from Table 1

simply by changing c¢;; to p,;. Here p=p; = p;, =2 py,

L omy

L my ny Pis P P23 Py

Iy my  ny

1 00

0 1 0 P12 0 P 0

0 0 1

0 0 1

1 1 0 2% 0 Pi2tp/2 0

1 1 0

0 0 1

1 20 P2 0 P12 +8p/25 —6p/25
21 0

0 0 I

1 3 0 Do 0 Py +9p/50 —~6p/25
310

1 1 0

113 P +p/3 p/(3V2) P2 +p/3 -p/(3V2)
111

0 1 1

T 1 1 pa+p/6 p/(3V2) piatp/3 0

2 1 1

110

113 pi+4p/9 2p/V2) pin+4p/21 ~10p/@72)
2 02 1

01 1

303 3 pi+p/11 3p/(11Y2) iz +27p/121 15p/(121y2)
31 1

1 1 0

116 piz+9p/19 3p/(19V2) pi+27p/361 -105p,/(361y2)
33 1
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selection rules of Eq. (12) for backscattering along
xy in these nine cases finally become:

x3( xxp) )_‘/3-'~Pi4(]| x’z) +P’13(” x’3)
x3(x)x5) By pha(ll )

x5 %) %57 Paa(11 ) + o (Il 3).

The selection rules based on Eq. (13) and Table 3
are in agreement with those in the literature for the
high symmetry directions [100], [110], [111] ([8,9]
and [210] ([10]). In contrast, for some of the lower
symmetry directions we have found some errors in
published papers. In the case of (311) orientation,
Ref. [11], a QTA mode was considered, polarized
along the direction [322] instead of the direction
[233] taken here; that produced a wrong combination
of elasto-optical coefficients in the Brillouin tensor
for this mode. A similar error was found in the case
of [211]-oriented samples [12], where a QLA mode
was considered with polarization along [122] instead
of [211].

A final comment is necessary here. Eq. (13) is
valid for BS in each of the two constituent bulk
materials and the scattering efficiencies are propor-
tional to the corresponding factor | p! jlz. In SLs, the
same selection rules described by Egs. (10) to (13)
are valid, but the efficiencies now are proportional to
the factor [Ap] jlz, where Ap;; is the difference
between the p;; values of materials 1 and 2 (Ref.

[13).

4. Conclusion

In conclusion, the propagation of acoustic waves
in cubic crystals and the selection rules of light
scattering by folded acoustic phonons were analyzed.
A convenient mathematical formalism was employed
for handling the fourth-rank tensor transformations
in the g-adapted system of axes. In this way, the

lengthy computations were shortcut and the results
were put in forms which are easier to physically
interpret. This procedure was applied in detail to
backscattering geometry along nine different SL
growth directions. The same procedure is applicable
to any other orientation of the acoustic mode
wavevector q, e.g. perpendicular to the superlattice
direction of growth.
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