Low-temperature far-infrared study of localized states in In-doped Pb_{0.75}Sn_{0.25}Te single crystals

N Romčevićt, Z V Popovićt and D R Khokhlovt

- † Institute of Physics, PO Box 57, 11001 Belgrade, Yugoslavia
- ‡ Low-Temperature Physics Department, Moscow State University, 117234 Moscow, Russia

Received 5 December 1991

Abstract. We present low-temperature far-infrared reflection spectra of In-doped Pb_{0.75}Sn_{0.25}Te single crystals at various doping concentrations. These spectra at temperatures below 20 K are fitted using a modified plasmon-phonon interaction model with an additional oscillator, which describes the electron transition from two-to one-electron states at the In impurity level. The In-doped Pb_{0.75}Sn_{0.25}Te impurity-state energy structure is explained.

1. Introduction

 ${\rm Pb}_{1-x}{\rm Sn}_x{\rm Te}$ is a well known narrow-band-gap semiconductor [1] with a usually very high $(n,p>10^{17}~{\rm cm}^{-3})$ intrinsic free-carrier concentration. In ${\rm A^{IV}B^{VI}}$ alloys, indium concentrations higher than those of other donors and acceptors result in an impurity level the location of which is determined by alloy composition and temperature [2, 3]. The Fermi level of ${\rm A^{IV}B^{VI}}$ alloys is pinned to the In impurity level and shifts with it on temperature and pressure changes [2]. Even though the pinning of the Fermi level to the In impurity level has been studied extensively [4, 5], no satisfactory explanation of this effect exists as yet. For 0.28 > x > 0.22 the In impurity level lies within the forbidden band (dielectric states [2]), resulting in a sharp drop in the free-carrier concentration. These In-doped alloys are unique in that (at temperatures below about 20 K in the dielectric state) they are photosensitive and exhibit a decrease in electrical resistivity of several orders of magnitude when illuminated by low-intensity infrared radiation [6].

Because of their high free-carrier concentration, the optical properties of In-doped $Pb_{1-x}Sn_x$ Te in the far-infrared (FIR) spectral region have usually been investigated on thin-film samples [7] where a temperature-induced plasma frequency shift has been observed.

In our earlier paper [8] we analysed the FIR reflection spectra of a 0.5 at.% Indoped Pb_{0.75}Sn_{0.25}Te single crystal and showed that, if a photo-excited free-carrier concentration spatial distribution is introduced into the plasmon-phonon interaction model, good agreement is obtained between the experimental and theoretical spectra. FIR spectra of the 1.2 at.% In-doped Pb_{0.75}Sn_{0.25}Te single crystal are given in [9]. These spectra were analysed using a fitting procedure based on the plasmon-phonon interaction model. Below 20 K, a new structure is in evidence that has to be fitted

by an additional oscillator in the plasmon-phonon interaction model. It may be explained in terms of $Pb_{0.75}Sn_{0.25}Te$ (In) localized impurity states.

In this paper, we present FIR reflection spectra of both 0.5 at.% and 1.2 at.% Indoped $Pb_{0.75}Sn_{0.25}$ Te single crystals from 50 to 250 cm⁻¹ at temperatures of 5–20 K. The FIR spectra change with the In content and the infrared irradiating flux. These spectra are also analysed using a fitting procedure based on the modified plasmon-phonon interaction model (but incorporating an additional oscillator characterizing localized impurity states). Thus, the location of the impurity level at T=0 K, the temperature T_k at which this level appears and its temperature dependence are obtained. The potential barrier width between localized states at T=0 K and its value versus temperature as well as impurity-state-filling mechanisms are determined.

2. Experimental details

Indium-doped Pb_{0.75}Sn_{0.25}Te single crystals grown by the modified Bridgman method were studied. Details of both the growth procedure and the measurement may be found in [8, 9]. A Bruker IFS 113v spectrometer with Oxford model CF 100 cryostat was used for the low-temperature FIR reflectivity measurements.

3. Results and discussion

Work to date on the persistent photoconductivity effect in In-doped $Pb_{0.75}Sn_{0.25}$ Te indicates that the effect occurs at temperatures below about 20 K, that it is most pronounced at indium concentrations of about 0.5 at.% and that the effect weakens with further increase in indium concentration [10]. Moreover, the quasi-stationary photo-excited carrier concentration is proportional to the incident irradiating flux Φ , if other parameters are constant. In an attempt to gain insight into how all the above are demonstrated in In-doped $Pb_{0.75}Sn_{0.25}$ Te reflection spectra, we present FIR reflectivity spectra at T=10 K: figure 1(a) for 1.2 at.% In, figure 1(b) the same as for figure 1(a) but at $\Phi_2=0.75\Phi_1$ (a decrease in irradiation flux effected by a sample holder with a 25% smaller diaphragm surface) and figure 1(c) for 0.5 at.% In and $\Phi_3=\Phi_1$. Although the spectra in figure 1 differ, a heretofore unobserved structure is clearly in evidence at about 130 cm⁻¹ (indicated by arrows).

The reflectivity spectra shown in figure 1 were analysed using a fitting procedure based on the modified plasmon-phonon interaction model [9]:

$$\epsilon(\omega) = \epsilon_{\infty} \left[1 - \omega_{\rm p}^2 / \omega \left(\omega + i \tau^{-1} \right) + \left(\omega_{\rm LO}^2 - \omega_{\rm TO}^2 \right) / \left(\omega_{\rm TO}^2 - \omega^2 - i \gamma_{\rm TO} \omega \right) \right. \\ \left. + \omega_{\rm loc}^2 / \left(\omega_0^2 - \omega^2 - i G \omega \right) \right] \tag{1}$$

where ω_{TO} , ω_{LO} and ω_p are the transverse, longitudinal and plasma frequencies, respectively, γ_{TO} is the oscillator damping, τ is the free-carrier relaxation time and ϵ_{∞} is the high-frequency dielectric constant. The second term in equation (1) is the free-carrier contribution and the third term is the lattice vibration contribution to the dielectric constant. The fourth term in equation (1) represents a new structure in the FIR reflection spectra due to an additional oscillator of characteristic frequency ω_0 , where G is the damping and ω_{loc}^2 the 'strength' of this oscillator. The explanation of these parameters will be given below.

Figure 1. FIR reflection spectra of $Pb_{0.75}Sn_{0.25}$ Te (In) single crystals at T=10 K: (a) $N_{\rm In}=1.2$ at.%, $\Phi_1=\Phi$; (b) $N_{\rm In}=1.2$ at.%, $\Phi_2=0.75\Phi$; (c) $N_{\rm In}=0.5$ at.%, $\Phi_3=\Phi$.

Figure 2. FIR reflection spectra of $Pb_{0.75}Sn_{0.25}Te(ln)$ single crystals at temperatures below T=20 K, showing experimental spectra (O) and calculated spectra (---) obtained by a fitting procedure based on the model given by equation (1), with the parameter values given in table 1: (a) $N_{\rm In}=1.2$ at.%, $\Phi_1=\Phi$; (b) $N_{\rm In}=1.2$ at.%, $\Phi_2=0.75\Phi$; (c) $N_{\rm In}=0.5$ at.%, $\Phi_3=\Phi$.

As evidenced in figure 2, the computed spectra and experimental data are in reasonably good agreement. The best-fit parameters are listed in table 1. The parameters of the oscillators, $\omega_{\rm TO}=32~{\rm cm}^{-1},~\omega_{\rm LO}=105~{\rm cm}^{-1}$ and $\gamma=1~{\rm cm}^{-1}$,

are looked upon as constant because, as we previously discussed [9], their changes in such a narrow temperature interval are negligible. With regard to the fact that the changes $\epsilon_{\infty} = 44 \pm 2$ and $\tau^{-1} = 38 \pm 4$ cm⁻¹ from specimen to specimen in this temperature interval are not great, we have not proceeded to discuss this separately. As can be seen from table 1, the parameter G depending on the In concentration drastically changes from 50 to 100. Moreover, when the flux changes, $\omega_{\rm p}$ [8, 11] changes, and temperature changes affect $\omega_{\rm p}$, $\omega_{\rm 0}$ and $\omega_{\rm loc}$.

Table 1 may be used to explain the difference between the spectra in figure 1. As the photo-excited electron concentration n in In-doped $\mathrm{Pb}_{0.75}\mathrm{Sn}_{0.25}\mathrm{Te}$ is defined by the incident light flux, the n-value is higher in the case shown in figure 1(a) than in that in figure 1(b). This becomes evident if the ω_p -values listed in table 1 for the three cases are compared. Thus, because ω_p^2 is proportional to the total number of free carriers (both impurity and photo-excited), $\omega_{p3}(N_{\mathrm{In}}=0.5$ at.%, Φ)> $\omega_{p1}(N_{\mathrm{In}}=1.2$ at.%, Φ)> $\omega_{p2}(N_{\mathrm{In}}=1.2$ at.%, Φ). This is substantiated in figure 3 which depicts the ω_p -temperature dependence for the three cases discussed.

<i>T</i> (K)	$\omega_{ m p}$ (cm ⁻¹)	ω_0 (cm ⁻¹)	$\omega_{ m loc}^2 \ ({ m cm}^{-2})$	G (cm ⁻¹)	N _{In} (at.%)	Φ/Φ_1
10	84	135	1375			
15	71	125	1275	50	1.2	1
20	36	115	417			
8	73	139	1128			
10	68	136	1115			
12	63	133.1	1108			
14	48	127.1	1085	50	1.2	0.75
16	35	123.2	1001			
18	25	119.5	632			
20	19	115	254			
5	132	146	1154			
10	103	136	1132			
15	77	125	1041	100	0.5	- <u>1</u>
20	37	115	347			

Table 1. Optical parameters of phonons and plasmons obtained by oscillator fitting of the $Pb_{0.75}Sn_{0.25}$ Te(In) reflection spectra.

As $\omega_{\rm p}$ and $\omega_{\rm 0}$ in all three cases lie close to one another, small changes in $\omega_{\rm p}$ have a great impact on the reflection spectra, i.e. the observability of the additional oscillator in figure 1. That is, for the case depicted in figure 1(a), $\omega_{\rm p}$ is lower than $\omega_{\rm 0}$ and a saddle-like structure appears at the plasma edge. As $\omega_{\rm p}$ increases (figure 1(c)), the plasma edge masks the additional oscillator, the saddle point becoming almost imperceptible (arrow), and the plasma edge slope changes. If $\omega_{\rm p}$ is much lower than $\omega_{\rm 0}$ (figure 1(b)), the additional oscillator is observable but it is not more pronounced because in 'strength' it is the weakest of all those considered (table 1). The values obtained for $\omega_{\rm p}$ from table 1 are in accordance with the values obtained from transport measurements given in [8, 9, 11].

The $\omega_0(T)$ -dependence depicted in figure 4 determines the energy difference between the one-electron and the two-electron states [9]. In figure 4, crosses correspond to the fitted spectra in figure 2(a), open circles to figure 2(b) and open

Figure 3. Temperature dependence of plasma frequencies: +, $N_{\rm In}=1.2$ at.%, $\Phi_1=\Phi$; O, $N_{\rm In}=1.2$ at.%, $\Phi_2=0.75\Phi$; \square , $N_{\rm In}=0.5$ at.%, $\Phi_3=\Phi$.

squares to figure 2(c). An $\omega_0(T)=aT+b$ least-squares linear interpolation yields $a=-2.3\times 10^{-4}$ eV K⁻¹ and b=18.2 meV, $a=\partial\omega_0/\partial T$ being the linear temperature shift coefficient of the energy difference between one- and two-electron states and $b=\omega_0(0)$ the extrapolated energy of the one-electron state at T=0 K.

Figure 4. Temperature dependence of the additionally introduced oscillator characteristic frequency ω_0 : +, $N_{\rm In}=1.2$ at.%, $\Phi_1=\Phi$; O, $N_{\rm In}=1.2$ at.%, $\Phi_2=0.75\Phi$; \square , $N_{\rm In}=0.5$ at.%, $\Phi_3=\Phi$.

The $\omega_{\rm loc}^2(T)/\omega_{\rm loc}^2(0)$ curve is given in figure 5, with the same notation as in figure 3 for the experimental data. The oscillator strength $\omega_{\rm loc}^2$ is a function of the electron transition rate between the two-electron and one-electron localized states. It is easy to show that the normalized value $\omega_{\rm loc}^2(T)/\omega_{\rm loc}^2(0)$ is proportional to the temperature-dependent part on the transition matrix element M_{12}^2 . The value of M_{12}^2 is in turn determined by the one-electron (excited) state lifetime τ_1 [12]. τ_1 depends on the probability $W_{\rm e}$ of electron emission from the one-electron state as $\tau_1 \sim 1 - W_{\rm e}$. At low temperatures this emission is defined in terms of thermal activation via the barrier $(E_{\rm g})$ between the one-electron (E_1) and two-electron (E_2)

Figure 5. Temperature dependence of normalized 'strength' $\omega_{\rm loc}^2(T)/\omega_{\rm loc}^2(0)$ of the additionally introduced oscillator: +, $N_{\rm ln}=1.2$ at.%, $\Phi_1=\Phi$; O, $N_{\rm ln}=1.2$ at.%, $\Phi_2=0.75\Phi$; \Box , $N_{\rm ln}=0.5$ at.%, $\Phi_3=\Phi$.

Figure 6. Configuration coordinate diagram for indium in Pb_{0.75} Sn_{0.25} Te.

localized states $W_{\rm e} = \exp(-E_{\rm g}/kT)$ (figure 6).

According to our scheme, the curve corresponding to the one-electron state moves as the temperature rises, and at $T=T_{\rm k}$, the barrier between states E_1 and E_2 disappears (see the broken curve in figure 6). A good fit (full curve in figure 5) is obtained for

$$\omega_{\text{loc}}^2(T)/\omega_{\text{loc}}^2(0) = 1 - \exp\left(-E_g/kT\right) \tag{2}$$

where $E_{\rm g}$ is the two-electron-to-one-electron-state barrier width (see figure 6). A linear $E_{\rm g}$ -temperature dependence $E_{\rm g}=A(T_{\rm k}-T)$ results in a best-fit parameter of $E_{\rm g}({\rm meV})=0.56(21-T)$. Note that the value of $T_{\rm k}=21$ K coincides with the persistent photoconductivity temperature obtained from galvanomagnetic measurements [2, 8, 9, 11]. One can see that, at liquid-helium temperature, $E_{\rm g}\gg kT$. Nevertheless, measurements of long-term photoconductivity relaxation show that the redistribution of the localized-state occupancies during this process plays an important role [13]. This means that at temperatures T<10 K the main contribution to the transitions between E_1 and E_2 comes from tunnelling through the barrier $E_{\rm g}$.

The universality of the $\omega_{\rm loc}^2(T)/\omega_{\rm loc}^2(0)$ curve indicates that the temperature-dependent part of the transition matrix element does not depend on the experimental conditions (light flux), nor does the interaction of the impurity centres affect the temperature-dependent part of intercentre transitions.

The impurity centre configuration state diagram is shown in figure 6. In accordance with the $\omega_0(T)$ -dependence, the energy of the minimum that corresponds to the one-electron state is near the bottom of the conduction band (state E_1 in figure 6). The E_1 -state occupancy is strongly temperature dependent ($\omega_{\rm loc}^2(T)$), indicating a change in the barrier width between E_1 and E_2 . At $T_k=21$ K this barrier vanishes (broken curve in figure 6) and the related $\omega_{\rm loc}^2$ drops to zero. The coincidence of this temperature with the temperature of the onset of the persistent photoconductivity effect supports our assumption that persistent photoconductivity depends on non-equilibrium charge-carrier relaxation via the one-electron metastable localized state.

4. Conclusion

The measurements of FIR reflectivity spectra discussed were performed on In-doped $Pb_{0.75}Sn_{0.25}Te$ single crystals in the temperature range 5-20 K for a variety of doping concentrations. We have shown that persistent conductivity depends on photo-excited electron relaxation via the metastable one-electron state. At T < 21 K, this state lies below the bottom of the conduction band and above the stable two-electron state. The potential barrier $(E_{\rm g}(0)=E_{\rm g0}=11.76~{\rm meV}$ at $T=0~{\rm K})$ between these two states and its temperature dependence have been determined. The existence of the barrier is a pre-condition for the appearance of the persistent photoconductivity effect. We have also determined the position of the metastable one-electron in respect to the two-electron state $(\omega_0$ at $T=0~{\rm K})$ and its temperature dependence.

Acknowledgments

The authors thank W König for the measurement of the FIR spectra, and A V Nikorich for samples.

References

- Ravich Yu I, Efimova B A and Smirnov I A 1970 Semiconducting Lead Chalcogenides ed L S Stil'bans (New York: Plenum) p 60
- [2] Akimov B A, Ryabova L I, Yatsenko O B and Chudinov S M 1979 Fiz. Tekh. Poluprov. 13 752 (Engl. Transl. 1979 Sov. Phys.-Semicond. 13 441)
- [3] Lent C S, Bowen M A, Allgaier R S, Dow J D, Sankey O F and Ho E S 1987 Solid State Commun. 61 83
- [4] Vul M, Voronova I D, Kalyuzhnaya G M, Mamedov T S and Ragimova T Sh 1979 Zh. Eksp. Teor. Fiz. Pis. Red. 29 21 (Engl. Transl. 1979 JETP Lett. 29 18)
- [5] Adler P and Yoffa E J 1976 Phys. Rev. Lett. 36 1197
- [6] Akimov B A, Brandt N B, Klimonskiy S O, Ryabova L I and Khokhlov D R 1982 Phys. Lett. A 88 483
- [7] McKnight S W and El-Rayess M K 1984 Solid State Commun. 49 1001
- [8] Romčević N, Popović Z V, Khokhlov D R, Nikorich A V and König W 1991 Infrared Phys. 31 225
- [9] Romčević N, Popović Z V, Khokhlov D R, Nikorich A V and König W 1991 Phys. Rev. B 43 6712
- [10] Akimov B A, Brandt N B, Nikorich A V, Ryabova L I and Sokovishin V V 1984 Zh. Eksp. Teor. Fiz. Pis. Red. 39 222 (Engl. Transl. 1984 JETP Lett. 29 198)
- [11] Akimov B A, Albul A V, Nikorich A V, Ryabova L I and Khokhlov D R 1984 Fiz. Tekh. Poluprov. 18 1778 (Engl. Transl. 1984 Sov. Phys.-Semicond. 18 1112)

- [12] Ravich Yu I, Efimora B A and Smirnov I A 1970 Semiconducting Lead Chalcogenides ed L S Stil'bans (New York: Plenum) p 88
 [13] Ivanchik I I, Khokhlov D R, Nikorich A V, Popović Z V and Romčević N 1990 Proc. 8th Int. Conf.
- on Ternary and Multinary Compounds (Kishinev, 1990) p 318