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1. Introduction

Nanoscale world is at the border between the quantum realm at the smaller dimensions

and the classical one at larger. At the quantum side of this divide, systems under

consideration consist of few particles and the properties of the sample often do not average

into well-behaved quantities with deviations from the mean value much smaller than the

mean value itself. So standard assumptions of both the classical physics and the standard

statistics can break down within the nanoscale domain. This occurrence impacts the

methods for probing the transport at the nanoscale.
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Noncontact measurements of transport can offer distinct advantages. Macroscopic contacts

necessary for the standard transport measurements often disturb the system since they are

immensely larger than it. The structure of the contacts needs to impact the system as little

as possible, requiring cooling to very low temperatures. Thermal noise introduced by

contacts is hard to distinguish from the quantum noise that is an interesting property of the

probed system.

Experiment is always performed on an object composed of nonidentical units and averaging

of the properties does not automatically occur within the measurement apparatus. Moreover,

the most interesting properties are often encoded into distribution of the results of

measurements, and not exclusively in their mean values. Quantum side of the breakdown is

somewhat different. The quantum transport theory deals with universality of the transport. In

the quantum limit, as most transparently seen in the Landauer formula for conductivity, the

whole variety of the transport behavior boils down to the number and transmitivities of

transport channels. The variety of quantum behavior in transport appears due to macroscopic

quantum phenomena or lies hidden in the variability of nominally identical nanoscale systems.

To probe the rich variety of transport phenomena at the nanoscale, it is preferable to look at

the properties of conducting quasiparticles than to look at the integral characteristics of a

collection of them. Quasiparticles are most easily accessed through spectroscopic techniques,

like Raman spectroscopy, electron spin resonance (ESR), and infrared reflection (IRR)

spectroscopy. Resonant nature of excitations and response detection in spectroscopy offer us a

way to discriminate between constituents of the nanoscale system and look exclusively at the

processes that are in resonance with the appropriate driving. Therefore the noncontact

spectroscopic measurements give us an opportunity to see the nanoscale world in more detail.

This chapter is partitioned in three sections which are organized as follows. In the first

section, we provide a short introduction to the Raman scattering technique followed with a

review on an indirect finding of the two different variable range hopping (VRH) transport

mechanisms based on the analysis of the temperature dependent electronic Raman

background of nanocrystalline BiFeO3 [1]. The subsequent section tackles a summary on

how both particle size decreased and Nd doping influence the Plasmonephonon

interaction and optical conductivity in CeO2�y nanocrystals investigated by IRR

spectroscopy [2]. Finally, in the third section, the main aspects of conduction ESR have

been briefly introduced in which terms the temperature evolution and character of

transport properties of single-walled carbon nanotubes have been elaborated [3].

2. Raman scattering
2.1 Short introduction to Raman scattering technique

In solid state spectroscopy, the inelastic scattering of photons by lattice vibrations (LVs) is

known as Raman effect. The photon energy can be lost or gained in such processes, which
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is accomplished by the phonon creation or annihilation, and termed in literature as Stokes

or anti-Stokes Raman excitation, respectively. Brillouin Raman scattering (RS), however,

stands for a particular case of RS that concerns the scattering by acoustic phonons of very

low frequencies, unlike common Raman which involves optical phonons. The theory of

Raman spectroscopy can be found elsewhere. Nevertheless, for a rather comprehensive

elaboration the reader is further referred to seminal Mitra’s work [4], some of which

fragments we will rely on in what follows.

Following the first principles of electromagnetism, the incident electromagnetic field of the

photons is coupled with the phonons via dipole moments that are induced by the phonon

field. The electronic 3� 3 polarizability tensor amn is modulated by the variation of the

lattice due to the normal vibration of frequency up and can be expanded in terms of the

time dependent atomic displacement components up ¼ upð0Þeiupt as

amn¼að0Þmn þ
X
p

að1Þmn;pup þ
1

2

X
p

X
q

að2Þmn;pqupuq þ. (2.1)

where

að1Þmn;p¼
�
vamn

vup

�
up¼0

; að2Þmn;pq ¼
�
v2amn

vupvuq

�
up¼0; uq¼0

. (2.2)

If E
!

denotes the electric field of incident electromagnetic radiation with frequency u,

E
!¼ E

!ð0Þeiut; (2.3)

then the induced dipole moment can be written as

M
!¼ ba E

!
; (2.4)

which ultimately yields induced dipole moment along p mode

M
!

p¼ bað0Þ E!0e
iut þ bað1Þ E!0e

iðu�upÞtupð0Þ þ bað2Þ E!0e
iðu�2upÞtu2pð0Þ þ. (2.5)

First term in Eq. (2.5) represents nothing but elastic Raleigh scattering process. The

energy of the electromagnetic radiation remains unchanged in this case. The derivative of

the electronic polarizability in the second term in Eq. (2.5) gives rise to the first-order RS

processes when incident photon

�
Z k
!

1; Zu1

�
is absorbed or created to create or destroy a

phonon
�
Z k
!
; Zu

�
. The final photon, with both different wave vector and frequency�

Z k
!

2; Zu2

�
from the incident one, gets emitted in such a way that the energy and the

momentum are totally conserved. Reduced Planck’s constant is denoted as Z.
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In doped semiconductors and disordered metals, spectral recoil of light in RS

consistently comprises a number of distinctive peaks generated by optically active

phonons, as well as, an extended frequency continuum which is in direct relationship

with electronic response [6]. This continuous spectral background originates from

low-energy electronic excitations, which reflects the charge carrier scattering rate, and

is familiarly known in literature as the Raman electronic background [1,7e11].

Falkovsky [7] was first to provide a theoretical foundation for the spectral profiles of

Raman electronic background in “dirty” metals. The effects of electronic excitations in

Raman are usually observed at low-energy scales and are attributed to scattering by

phonons or impurities involving finite momentum transfers (k 6¼ 0) as a result of the

finite penetration depth of light in materials. Later on, Zawadowski and Cardona [8]

proposed a Feynman diagrammatic approach to estimating the Kubo spectral response

function within the scope of ladder approximation [12] at qz0. Most importantly, these

authors were first to recognize an intimately related link between the nonresonant

electronic excitations seen in Raman with the carrier transport.

As with nonresonant RS electronic response, the related Feynman diagrams (see Fig. 2.1)

are composed of wavy lines denoting photon propagators. Their initial and final

(momentum, energy) are respectively

�
Z k
!

1; Zu1

�
and

�
Z k
!

2; Zu2

�
. An electron-hole

pair of (momentum: k
!¼ k

!
1 � k

!
2, energy: u ¼ u1 � u2), scattered by phonons and/or

impurities, become generated by the incoming photon propagator. Phonon propagator,

given in dashed line (Fig. 2.1), can be excited by the electron/hole inside a pair and is

further captured by its counterpart (hole/electron), as is enforced by the ladder

approximation. At last, upon summing up all the dominating ladder-like diagrams, Raman

differential cross section due to the purely electronic response [9,11], reads as

d2s

dudU
f

1

1� expð � Zu=kBTÞ �
us

1þ ðusÞ2: (2.6)

Figure 2.1
Raman scattering of light (wavy lines) due to phonons (dashed lines). Electron-hole formations
(solid lines) represented via loops in the Feynman diagrams of third order (first order Raman
scattering). Processes involving electron and hole contributions are given in left and right

diagrams, respectively. Vertex , represents electron-photon interaction, while vertex represents
electron-phonon interaction as is given in Ref. [5]. The drawing is adapted from D.M. Djoki�c, B.
Stojadinovi�c, D. Stepanenko, Z. Doh�cevi�c-Mitrovi�c, Probing charge carrier transport regimes in BiFeO3

nanoparticles by Raman spectroscopy, Scr. Mater. 181 (2020) 6e9. https://doi.org/10.1016/j.scriptamat.
2020.02.008.
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At a particular value of the effective scattering rate, 1=s, the proportionality factor in

Eq. (2.6) is a function of different variables depending on the type of the experimental

setup [10]. The temperature-dependent Bose-Einstein factor and expression resembling

Drude function are respectively given as the second and third term in the product of

Eq. (2.6), while 1=s involves two terms in the sum as follows

1=s¼ 1=s0 þ Dq2: (2.7)

1=s0 stands for the charge carrier scattering rate due to phonons/impurities in q/0 limit,

which is concerned with nothing but bulk channels. The second term (Dq2), however,

gives rise to the effects of processes nonconserving momenta, very often pronounced in

nanocrystals [1]. It is safe to neglect the bulk term (1=s0) if there is no experimental

evidence for the electronic Raman background in the case of bulk materials. D is the

diffusion constant which is, based on the Einstein relation, related to electric conductivity

s in the following manner

D¼ s=
�
gðεFÞe2

�
; (2.8)

where e ¼ 1:6� 10�19 C. The average value of the electronic density states close to the

Fermi level [9] is denoted with gðεFÞ.

2.2 Multiferroic BiFeO3 nanoparticles

Crystalline bismuth ferrite stands for a multiferroic material increasingly attracting the

attention among the researchers and is also one of few materials to provide both

ferroelectric (TCz1100 K) and antiferromagnetic (TNz643 K) properties at room

temperature [13] and even higher. It is important to know that BiFeO3 has proven

undemanding to obtain in ambient conditions. BiFeO3 is classed as rhombohedrally

distorted ABO3 perovskite structure (space group R3c) with lattice parameter

arh ¼ 3:965 �A, a rhombohedral angle arh of 89.30e89:48+, and ferroelectric polarization

along [111]pseudocubic direction at room temperature [14]. Primitive unit cell consists of two

unit formulas and contains 10 atoms. This structure can be represented as two distorted

perovskite unit cells, connected along the main pseudocubic diagonal [111] to form a

rhombohedral unit cell, as is given in Fig. 2.2A. Bi3þ ions are situated at A lattice sites

and are surrounded by 12 oxygen atoms. On the other hand side, Fe3þ ions are located at

B lattice sites, and they are surrounded by six oxygen atoms with which it forms a FeO6

octahedron. In this configuration, Bi3þ and Fe3þ ions are shifted along [111] direction, and

two oxygen octahedrons are rotated around [111] direction in the opposite directions by

14� that can be seen from the position of the green octahedrons in Fig. 2.2B. This means

that the Fe-O-Fe angle deviates from 180� to amount nearly 154e156� [16,17]. The unit

cell can also be described in a hexagonal frame of reference, where the hexagonal
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c-axis is aligned parallel to the diagonals of the perovskite cube. In other terms,

[001]hexagonal k [111]pseudocubic. The corresponding hexagonal lattice parameters (Fig. 2.2C

are ahex ¼ 5:579 �A and chex ¼ 13:869 �A [14,18].

Bulk BiFeO3 is a semiconductor with literature values of the bandgap determined by

optical measurements at room temperature in the range from 2.1 to 2:8 eV. Several authors

claim that BiFeO3 has a direct bandgap transition at about 2.1e2:8 eV [19e22]. There are,

however, published studies in which it has been shown that BiFeO3 has an indirect

bandgap transition of about 0.4e1:0 eV; quite smaller as compared to the values obtained

for the direct transition [23]. Density functional theory calculations [24,25] have

corroborated an indirect energy transition of about 2:1 eV, while in the room temperature

absorption spectra recorded on BiFeO3 thin film, the transition at approximately 2:17 eV

has been observed [26].

Finally, according to Catalan and some of the references therein [16], based on two-probe

DC resistivity measurements carried out on high-quality bulk samples of BiFeO3, the log

resistivity value undergoes two slopes in Arrhenius law with increasing temperature.

Actually, it has been found that the activation energy of the charge carriers decreases from

nearly 1.3 down to nearly 0:6 eV as the material is heated above TN with the anomaly

around it. However, one does not expect such type of conducting behavior when the scale

of the crystal moves down to several nanometers. Indeed, in the case of defective

nanoparticles with a core/shell structure [1], the nanoparticle shell may have metallic and/

or semiconducting features, while the nanoparticle core prominently features insulating

properties. This casts a shadow over models that are commonly applied in pristine bulk

materials to fit the resistivity data in systems with disorder and/or decreased dimensions.

[111]

[111]

Bi3+

Fe3+

O2-

c(b(a( )))

ahex

c h
ex

Figure 2.2
Schematic representation of (A) rhombohedral structure framed by orange dashed lines,

(B) hexagonal perovskite structure of BiFeO3 with [111] ferroelectric polarization direction given
in gray arrow, and (C) hexagonal cell (black), rhombohedral (red), and pseudocubic (blue) unit
cell with corresponding unit vectors drawn in arrows. The figure is to a rather large extent reworked
from J.-G. Park, M.D. Le, J. Jeong, S. Lee, Structure and spin dynamics of multiferroic BiFeO3, J. Phys.

Condens. Mat. 26 (2014) 433202. https://doi.org/10.1088/0953-8984/26/43/433202.
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At a scale ranging down to nanometers, BiFeO3 has proven very prospective for a

potential use in satellite communications, electrically accessed magnetic memory,

commercial applications for photovoltaics and alternative sensors [16]. Most essentially,

the electric resistance of BiFeO3 is found to be a key parameter that should comply with

the prime industrial requirements. Accomplishing high-electric conductivity value in this

nanoscopic compound from its powders is one of the major assets and is perceived as a

very promising in development of the novelty. Moreover, it proves quite demanding to

identify the charge carrier transport, as well as, to distill electric conductivity value using

the contact probes themselves invasively [27,28]. On the other hand, RS tool is widely

known as a local and highly informative experimental probe capable of assessing the

origin and dynamics of charge carriers in conducting materials. This makes Raman

technique a reliable, yet noninvasive, means for investigating the transport properties of

materials that are treated with utmost delicacy.

Fairly recent temperature-dependent RS study, carried out on the multiferroic BiFeO3

nanoparticles of high purity and relied on the temperature evolution electronic Raman

background [1], has explored an exciting prospect of extracting the relevant piece of

information about the electric transport in this nanoscopic compound. m-RS measurements

were recorded over the temperature range of 80e723 K, while the related spectra were

gathered at the backscattering arrangement with solid state 532 nm Nd:YAG laser as

excitation at sub-mW laser powers on the sample itself. There were more than 13 optical

phonon modes (symmetry: A1 and E) detected in the experiment, while the spectra were

decomposed with Lorentzian lineshape profiles, as is presented in Fig. 2.3 at four different

temperatures. The entire number, together with frequency positions, of the optically active

phonon modes of BiFeO3 nanoparticles detected with Raman were found exactly the same

with those observed in temperature-dependent RS spectra undertaken for bulk crystalline

BiFeO3 [29]. However, the authors [1] properly commented on the emerged splittings of a

number of few polar LOþTO phonon modes, which naturally appear in the case of

BiFeO3 nanoparticles [30,31]. As with bulk, the prediction based on the factor group

analysis turns out to be in accordance with the experiment implying 13 (4A1 þ 9E)

optically active modes in phonon Raman spectra [32].

In contrast to Raman spectra recorded for on bulk BiFeO3, Raman active optical modes

pertinent to BiFeO3 nanoparticles were evidenced to seat on quite a broad spectroscopic

profile (Fig. 2.3 shaded in light gray). Such a spectroscopic feature has a pronounced

temperature dependence and is familiarly known as Raman electronic background. In

literature, indeed there are spectroscopic backgrounds akin to one studied in Ref. [1] such

as nonresonant Raman continuous profile observed in metal-oxide thin films [33].

However, the related profile is quite shapeless, moreover with strong intensity, and is

ascribed to entirely electronic RS recoil independent of bands due to the phonons. This

Raman electronic background emerges as a result of the surface roughness at atomic scale.
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In addition, it has been reported that, in extremely small metallic particles [34] and

metallic thin film islands with adsorbents [35], RS due to the particle-hole pair excitations

brings about the emergence of the phononless continuous electronic background. This can

be explained in terms of the momentum conservation violation generated in the presence

of the electronic states at surface. Furthermore, even in the bulk hole-doped manganese

perovskites, the broad electronic Raman response associated with the scattering by

conduction electrons has been determined to cause a drastic change at the phase transition,

as shown by Liu et al. [36]. The evolution of the effects of electron correlations in this

compound could be assessed computably with temperature.

The authors of Ref. [1] have fittingly cast the surface states situated at particle boundaries

in the role of localization centers via which the conduction can run efficiently. In terms of

energy, these states are located near the vicinity of the Fermi level and they are, in

general, unequally distributed to evolve with both spatial and energy gap between them.

Therefore, the charge carrier conduction mechanism in which the hopping energy varies

Figure 2.3
Raman scattering spectra given for four representative temperatures (data points presented in
black). The spectra are composed of a continuous electronic background (shaded in light gray)
and Lorentzian phonon peaks (lines in blue). The overall fitting line is drawn with red line. The figure

is adopted from the published work D.M. Djoki�c, B. Stojadinovi�c, D. Stepanenko, Z. Doh�cevi�c-Mitrovi�c,
Probing charge carrier transport regimes in BiFeO3 nanoparticles by Raman spectroscopy, Scr. Mater. 181

(2020) 6e9. https://doi.org/10.1016/j.scriptamat.2020.02.008.
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with the hopping range can be safely modeled for description of the transport over an

extended temperature range in disordered semiconductors and/or amorphous solids, such

as nanoscaled materials. Commonly, exceptionally high-electric resistivity values are

observed in such systems. As such, these values serve as a definite fingerprint to rule out

any conventional metallic/semiconducting type of conductivity mechanism intrinsic to

(semi)conductors. VRH mechanism, nonetheless [37], stands for a rather viable transport

mechanism in nanoparticles with no other alternative acceptable, as was reported in

Ref. [1] for BiFeO3 nanoparticles. Two different types of VRH charge carrier transport

mechanisms in 3D have been probed in a contactless way using temperature-dependent

Raman spectroscopy, and it has been evidenced that these two are affected by different

degrees of the electron correlation strengths on the opposite sides of the antiferromagnetic

phase transition. Below the transition temperature, the transport undergoes the mechanism

explained by Efros and Shklovskii [38], whereas at high temperatures, the charge carrier

transport adheres to the traditional Mott VRH theory [37].

Here we provide a brief account of the Mott and EfroseShklovskii laws based on a

concise analysis from a seminal paper by Arginskaya and Kozub [39]. The central focus of

this study was on a considerable diversity of theoretical results emerging from calculations

for the exponential prefactors in various VRH expressions, as well as, the crossover from

VRH conductivity of Mott type in which the density of electronic states at Fermi level is

gðεzεFÞ ¼ const toward VRH conductivity running via states separated by a Coulomb

gap when gðεzεFÞfε
2. Aharony et al. [40] have made an attempt to obtain the universal

analytic expression for the temperature dependence of conductivity, sðTÞ, in the crossover

region from Mott to EfroseShklovskii law. In general terms, temperature dependence of

the VRH conductivity sðTÞ can be written down as

sðTÞ¼ snexp

�
�Tn
T

�n

; (2.9)

where n might take on 1=4 or 1=2 in 3D with respect to the law chosen, Mott’s or

EfroseShklovskii’s. Constant factors sn and Tn depend on the preferred of the two

models. However, the common feature of most of the relevant studies in the field of VRH

boils down to simplistic approaches in estimating the exponential prefactor sn. As a

traditional rule, sn is generally assumed to have no temperature dependence.

Factors sn and Tn, which are given in Eq. (2.9), can be computed straightforwardly by

optimizing the correlation linking the energy and spatial separation between the lattice

sites. Once an electric field is applied, hopping in the direction of the field is rather

preferred at different probabilities with respect to both distance and energy separation. As

with the 3D free electron case, in original Mott paper [37], it was in a simplified way

presented that the hopping energy is inversely proportional to the cube of the hopping

distance, while the hopping frequency n for a given temperature T was found to depend on
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two following parameters: r as the spatial distance between the sites in units of

localization length x and W as their typical hopping energy separation. Namely,

n¼ n0exp

�
� 2r

x
� W

kBT

�
; (2.10)

where nhn0 for both r ¼ 0 and W ¼ 0, whereas kB ¼ 1:38� 10�23 J
�
K stands for

Boltzmann constant. The hopping frequency characterizes the relative number of directed

charge carrier hops due to the electric field. Indeed, in noncrystalline systems, the

variables r and W are not randomly independent so that one can be combined into a single

parameter by minimizing the total exponent in (Eq. 2.10). In the actual fact, the hopping

from one site to another with a lower energy/distance occurs at high rate. However,

reaching both low energy/distance sites at the same time remains utterly impossible. The

same reasoning applies for the large energy/distance sites that altogether justifies the

application of variation method and thence the term “variable” in VRH.

Variable hopping processes translate a charge carrier by a range r within a time w 1= n;

but at a preferred W value that maximizes the electric current via hopping. This

proportionality squarely leads to the VRH expression for conductivity which is given in

(Eq. 2.9). Yet, to relate r with W or vice versa, one has to further assume that most of the

mobile carriers come from a narrow energy window near the Fermi level of width w kBT:

In such a way, the carrier density nc of spin S ¼ 1=2 which as the other factor prominently

figures in the expression for the conductivity and can be computed by integration as

nc¼ 2

Z
εFþkBT

εF

gðεÞdε; (2.11)

where gðεÞ measures the total number of states (dN) per both energy (dE) and volume unit

(V), each of which is double degenerated (2Sþ 1 ¼ 2).

One must emphasize that the wise choice of gðεÞ leads to the correct expression for the

exponent Tn, which differs by switching from 3D Mott (n ¼ 1=4) to EfroseShklovskii

regime (n ¼ 1=2). Experimental measurements in disordered systems do reveal that the

electron density of states (DOSs) may strongly vary in the vicinity of Fermi level, and it

seems reasonable to suggest that the theoretical concept of uniform DOSs near the Fermi

level is certainly insufficient to describe conduction mechanisms which account for the

Coulomb gap, as there is a jump in the electron DOSs due to Coulomb interactions

between localized states. In general, one can write down

kBTn¼
(
cp=
�
gðεFÞx3

�
; for n ¼ 1=4

e2=ð4pε0εrxÞ; for n ¼ 1=2
(2.12)
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where kB ¼ 1:38� 10�23 J
�
K and ε0 ¼ 8:85 � 10�12 F

�
m, while x stands for the

localization length of electron wave function of the surface states. cp represents the

percolation constant varying from 5 to 20. εr corresponds to the relative permittivity

constant. Nevertheless, even when the DOSs is not constant, the 3D Mott VRH

conductivity pattern is fully recovered if presented like Eq. (2.9), but is rather referred to

as the 3D EfroseShklovskii VRH [38] when n is, in particular, equal to 1=2. In Ref. [41],

a few temperature dependencies of the hopping conductivity, which come under exponent

1=4 or 1=2, are presented and the reader is further redirected to this reference to properly

infer the validity of use of VRH at high temperatures in disordered materials.

Nanoscaled BiFeO3 puts itself forward as a suitable candidate for exploring the crossover

from 1=2 to 1=4 exponent VRH conductivity as demonstrated in Ref. [1] based on the

Raman spectra. More interesting is the fact that crystalline BiFeO3 nanoparticles do not

only undergo a crossover but even a pronounced phase transition at w640 K below which

Coulomb correlations take place to form the antiferromagnetic ordering. Above the

transition temperature, however, these correlations become overwhelmed by the

temperature fluctuations through the concrete manifestation of the metallic-like

paramagnetic state.

There is a presence of localized surface states occupying the energies near the Fermi

level in the BiFeO3 nanomaterial. These states through a mediation back the VRH

transport even over a broad range of temperature. Temperature variations of lnð1 =sÞ,
which is proportional to lnðsÞ based on the Einstein relation from Eq. (2.8) are

linearized against T�n in Fig. 2.4A with n ¼ 1=2 and Fig. 2.4B with n ¼ 1=4, in the

strongly correlated (T < TN) and paramagnetic phase (T > TN), respectively. Relying on

the calculation for εrz28 from the impedance dielectric spectroscopy of BiFeO3

nanoparticles [42] and following (12) one can find that xz7 nm, while the DOSs

gðεFÞ in the high-temperature phase nearly amounts 2:1� 1018 localized states per

(eV � cm3). The result xz7 nm is physically meaningful since x < C[D, where the

average particle size C[Dz66 nm has been computed from the Gaubian particle size

distribution recorded by Scanning Electron Microscopy at room temperature on BiFeO3

(Fig. 2.4C and D). Finally, r ¼ 1
�
sz4p2s

��
C[D2e2gðεFÞ

�
z350 mUcm, which stands for

an extraordinarily high value that is not commonly encountered in conventional metals.

This value goes beyond the maximum resistivity value (w1 mUcm) limited by the

Mott-Ioffe-Regel criterion [43,44], which categorizes crystalline BiFeO3 nanoparticles

into a family of bad conductors and ultimately suggests that the conduction bands are

vanishing. This eliminates any possibility for the fixed thermally activated transport

generic to intrinsic semiconductors to dominate over 3D VRH.
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In certain disordered semiconductors, Ioffe and Regel [45], as well as Mott [46], have

altogether realized that conduction states pertinent to such systems fail to survive due to

the indefinite reduction in free mean path of carriers that scatters by. The key argument is

that it can never become shorter than the typical interatomic spacing. In this case, the

concept of carrier velocity cannot be properly formulated, and the entire coherent

quasiparticle motion is lost. The notion of a minimum metallic conductivity is actually in

accordance with a minimum mean free path.
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Figure 2.4
The dependence (T�n) versus (lnð1 =sÞ) in both paramagnetic phase (subfigure ðAÞ, n ¼ 1= 2)
and antiferromagnetic phase (subfigure (B), n ¼ 1=4) with the linear fitting curves given in red.
The surface morphology of the nanocrystalline BiFeO3 particles made with TESCAN SM-300

(subfigure (C)) and the corresponding histogram of the distribution of the particle size given in
gray, fitted by the Gaub distribution (red line), where ð64�2Þ nm is mean value and ð28�2Þnm
is standard deviation (subfigure (D)). The frequency of occurrence is labeled as f ð[Þ. The entire
figure is taken from D.M. Djoki�c, B. Stojadinovi�c, D. Stepanenko, Z. Doh�cevi�c-Mitrovi�c, Probing charge
carrier transport regimes in BiFeO3 nanoparticles by Raman spectroscopy, Scr. Mater. 181 (2020) 6e9.

https://doi.org/10.1016/j.scriptamat.2020.02.008.
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Generally, the choice of 3D VRH ought to be provisionally accepted as an assumption. In

the case of BiFeO3 nanoparticles, the existence of the Mott VRH mechanism has already

been deduced from the DC/AC measurements. These results are presented in Ref. [27].

Furthermore, the assumption about the validity of VRH is substantiated by the fact that the

estimated resistivity value ultimately exceeds the Mott-Ioffe-Regel maximum

(350 mUcm[1 mUcm). This implies that the conduction band energy sector tends to

fade away leaving no room for the fixed thermally activated transport to prevail, which

typically requires a markedly high density of conduction band states. Therefore, the

BiFeO3 nanoparticles are safe to be termed as bad conductors that retain metallic behavior,

through qualitative features such as temperature evolution. Quantitatively, however, the

bad conductors very much resemble the electric insulators as was observed in Ref. [1].

Specifically, the BiFeO3 nanoparticle shell exhibits metallic behavior whereas the core

insulator one, which is a case in defective nanoparticles with a core/shell structure.

3. Infrared reflection
3.1 Short introduction to infrared reflection technique

Infrared solid state spectroscopy stands for one of the most powerful and versatile

techniques meant for optically probing a diverse family of materials in a contactless

manner. The IRR response can assume either a purely electronic or a purely LV character.

The two cases have distinctly different approaches to the quantitative treatment of the

interaction processes between the radiation field and matter. The latter has conclusively

proven powerful for analyzing propagating vibrations with which crystal structures can be

revealed in ionic crystals and polar semiconductors. This analytical probe is highly useful

even for systems poor in the degree of crystallinity, which is oftentimes encountered in

nanoscopic matter.

In the long-wave limit (qz0), optically active vibrations of an ionic bipartite lattice

encapsulate the motion of one type of atoms relative to that of the other sublattice, yet

both in spatial phase. The natural concomitants of such motions comprise strong electric

dipoles of the material that can, accordingly, be directly coupled with the external electric

field at a given polarization angle of the incident electromagnetic radiation. The theory of

the IRR response originating form the interaction between the radiation field and the

matter is purely phenomenological and can be found elsewhere [4,47,48], based on

Maxwell’s and the macroscopic equations describing the vibrations in a polar material.

The reflective IRR spectroscopic recoil begins with a singularity in the dielectric function

observed at the transverse optical (TO) frequency of the polar phonon mode. The

singularity occurs as the radiation field of the incident electromagnetic wave couples with

the TO phonon mode. Coulombic force effects in the polar crystal shift the LO mode to

higher energies in contrast to the TO mode. The TO mode has a complex pole of the
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complex dielectric response function eεðuÞ, whereas the LO mode is associated with a

complex zero of eεðuÞ. Consequently, the incident infrared electromagnetic waves at

frequencies over the so-called reststrahlen TO-LO window are dispersed in such a way

that they fail to propagate through the condensed medium, but undergo reflection. In an

ideal polar crystal with undamped oscillators, the frequency selective reflectivity amounts

exactly 100%, but the reality is rather followed with the oscillator damping. Formally, the

reflectivity is given by the Fresnel formula

RðuÞ¼
				enðuÞ � 1enðuÞ þ 1

				2 ¼ ðnðuÞ � 1Þ2 þ k2ðuÞ
ðnðuÞ þ 1Þ2 þ k2ðuÞ; (2.13)

where RðuÞ is the frequency-dependent fraction of light intensity reflected. Complex

frequency dependent index of refraction, enðuÞ, is related to the complex dielectric

response as

enðuÞ¼ nðuÞ � ikðuÞ ¼
ffiffiffiffiffiffiffiffiffiffieεðuÞp

: (2.14)

The frequency dependent real part, nðuÞ, and imaginary part, kðuÞ as the extinction
coefficient, of the complex refractive index enðuÞ satisfy the following relationships

ε1ðuÞ¼ nðuÞ2 � kðuÞ2 and ε2ðuÞ ¼ 2nðuÞkðuÞ; (2.15)

where finally

eεðuÞh ε1ðuÞ þ iε2ðuÞ: (2.16)

For this reason, it is of uppermost importance to model, as well as, parametrize enεðuÞ that
properly describe the system probed by the IRR technique.

IRR signal of poorly conductive ionic crystals with large splitting between TO and LO

frequencies is commonly fitted with a complex dielectric function given by the following

expression

eεðuÞ¼ εN

Y
j

u2
LOj � u2 þ iugLOj

u2
TOj � u2 þ iugTOj

; (2.17)

where uLOj and uTOj are longitudinal and transverse frequencies of the j-th oscillator,

respectively, while gTOj and gLOj are their energy dampings, and εN corresponds to the

high-frequency dielectric constant (u/N). This model presents four tunable parameters

for each TO/LO mode and is employed for description of purely phononic spectra. The

model is familiarly known as the LV model, or habitually, four-parameter factorized

form of the dielectric function. Its major disadvantage consists in the fact that it

considers no contribution from the itinerant electronic excitations, neither single particle

nor collective [49].
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However, a great deal of semiconductors has a sizable portion of itinerant charge

carriers. Accordingly, the full description of the infrared optical reflectivity data of such

materials has to allow for both phonon and electronically collective (plasmon)

excitations. The cohabitation between the phonons and plasmons brings inexorably about

a somewhat pronounced interaction between the plasmons and LO phonons. This effect

becomes the most striking if the plasma frequency uP lies situated close to the LO

phonon energy. In this case, the complex dielectric function [50] can be factorized to

read as follows

eεðuÞ¼ εN

Qmþn
j¼1

�
u2 þ iugLOj � u2

LOj

�
um
Qm

j¼1

�
uþ igPj

�Qn
j¼1

�
u2 þ iugTOj � u2

TOj

�; (2.18)

where uTOj and gTOj are frequencies and damping of the TO modes, respectively. gP
represents the plasma damping rate. The equation directly expresses the coupled plasmon-

LO phonon frequencies uLOj and damping rates gLOj. This model is in literature termed as

the coupled plasmon-phonon (CPP) model.

In conducting oxides [48], on the other hand side, the Drude model can be employed with

no coupling for fitting the infrared reflectivity spectra. The plasmon contribution to the

complex dielectric function is expressed through the Drude term so that eεðuÞ is composed

of two additive terms in the following manner

eεðuÞ¼ εN

 Y
j

u2
LOj � u2 þ iugLOj

u2
TOj � u2 þ iugTOj

� u2
P

uðu� igPÞ

!
: (2.19)

The first product term is concerned with the pure phonon contribution, while the second

term represents the contributions originating from the collective electronic

excitationsdplasmons. The uðTO=LOÞj and gðTO=LOÞj are (TO/LO) frequencies and the

related damping rates of the decoupled phonon modes. The uP and gP are the plasma

frequency and its daping rate. This model brings us a material advantage in decoupling the

phonon from the plasmon contributions, and is called the decoupled plasmon-phonon

(DPP) model. Besides the aforementioned “classical” Drude term, sometimes the so-called

Double-damped Drude term is used, as is given in

eεðuÞ¼ εN

 Y
j

u2
LOj � u2 þ iugLOj

u2
TOj � u2 þ iugTOj

�u2
P þ iðgP � g0Þu
uðu� ig0Þ

!
: (2.20)

The difference between the dynamic damping (gP) at plasma frequency and the static

damping (g0) at zero frequency represents particular distinctiveness of this model.

The second term in the additive form of eεðuÞ turns into the classical Drude term once
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gP ¼ g0. The use of this model, which is also called DPP, provides more flexibility.

In fact, a rather precise description of the parametrized complex dielectric function is

offered by the model in numerical fittings based on it.

As with nanomaterials, the related IRR spectra can be properly analyzed using the

Bruggeman effective medium approximation [51]. The basic Bruggeman model includes

the influence of porosity as0@eεðuÞ � eεeff ðuÞeεðuÞ þ 2eεeff ðuÞ
1Aef þ

0@ 1� eεeff ðuÞ
1þ 2eεeff ðuÞ

1A�1� ef� ¼ 0: (2.21)

A decrease of the powder volume fraction as compared to the ambient air leads to a

decrease in the reflectivity values, and thence the IRR features may become significantly

broadened if there is a greater air fraction in the powder. For the binary material with a

great degree of inhomogeneity, constituted of the material eεðuÞ and air ðεair ¼ 1Þ with the

volume fractions ef and 1 � ef , respectively, the empirical relation for the complex effective

dielectric function eεeff ðuÞ must obey the above-written equation.

3.2 Doped nanocrystalline CeO2

As one of the most stable oxide of cerium, cerium dioxide CeO2 is considered to be

highly important functional material with outstanding applications in many various

fields. It crystallizes into a fluorite face centered cubic structure with space group Fm3m

(No. 225) to form a simple cubic oxygen suba lattice where the cerium ions occupy

alternate cube centers (see Fig. 2.5A) [52]. In terms of Wyckoff positions, Ce atoms are

located at the centers of the tetrahedrons (4a) (0,0,0) of which corners are populated with

Figure 2.5
The fluorite face centered cubic crystal structure of CeO2 (A) and its normal mode of the

infrared active lattice vibrations of (B). Ce ions are denoted in green, while O ions are denoted
in red.
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oxygen ions (8c) (1/4, 1/4, 1/4). Observing the existence of the center of inversion, the

structure has exactly one IRR (F2u) and one Raman (F2g) active mode [32], both of

which are triple degenerated. As is shown in Fig. 2.5B, the normal mode of the infrared

optically active vibrations consist of motions of both Ce and O atoms, but in the

opposite directions.

Nanocrystalline CeO2 is distinguished by its enhanced electric conductivity, size lattice

relaxation, as well as, many other advantages to bulk CeO2. As to what has been

reviewed in Ref. [53], decreasing particle size of crystalline CeO2 particles down to

nanoceria dioxide crystals results in the formation of oxygen vacancies which can be

further employed as descriptors for determining the valence state of Ce in the

nanoparticles. Actually, the large surface to volume ratio, then the inclination toward the

oxygen consumption, and basically, freeing Ce because of the reversible transition

between Ce3þ and Ce4þ ions altogether lead to enormous catalytic capacity of this

material. Nanoscaled CeO2 is furthermore found applicable to the active area of research

for renewable energy, solid oxide fuel cells, water and air purification, optical glass

polishing and decolorizing, UV ray filters, and many others [53].

Doped nanocrystalline CeO2, however, deserves a special attention as the optimal doping

with Cu or Nd has proven efficient in inducing the semiconductor-to-metallic state crossover

[2,52] in nanoceria dioxide. Moreover, electrons localized at the vacancies may behave like

free charge carriers to contribute drastically to the electrical conductivity [54]. This

originates from the presence of free charge carriers, which are numbered in the nanoceria

lattice, as the number of oxygen vacancies becomes increased by Nd content [55].

Following Ref. [2], the IRR spectroscopy has been applied to nondestructively investigate

the mechanism of the influence of the plasmon due to the enhanced conductivity upon the

phonon spectra with increasing Nd content in nanocrystalline CeO2 This material is a

polar semiconductor so that both phonon and plasmon excitations can be registered in the

IRR spectra, whereby the plasmon-phonon coupling mechanism can be explored, while the

extent to which the system acquires metallicity can be assessed. Radovi�c et al. [2] have

recorded the infrared reflectivity spectra on pure and Nd-doped CeO2�y nanopowders at

ambient temperature in far-infrared region from 100 up to 700 cm�1.

Fig. 2.6 shows the IRR spectra of undoped and Nd-doped CeO2�y nanopowders fitted with

the two models: coupled plasmon-phonon and decoupled plasmon-phonon with double-

damped Drude term. The concentration of the dopant is increased from 0% to 25%. The

IRR spectra markedly differ from those done on bulk CeO2, as the bulk reststrahlen region

is split into two extended TO-LO modes over 200e550 cm�1 range with decreasing

crystallite size. The splitting is more pronounced in samples with rather small crystallite

sizes and is accompanied with the redshift of the two LO modes, as well. Also, one can
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notice that with the raise of the dopant concentration, the low energy Drude tail and the

screening of the phonon modes became more and more prominent, due to the strong

presence of the free charge carriers. In the actual fact, increasing Nd content in the

nanoceria dioxide lattice can generate a huge number of oxygen vacancies [2], while the

plasmon-phonon interaction in the Nd-doped samples gets stronger.

Following the fits based upon both models applied (Fig. 2.6), all the plasmon modes

registered in all nanoceria dioxide samples exhibit a frequency decrease with Nd doping,

as can be seen from Fig. 2.7. The shift in the plasma frequency toward lower energies with

increasing Nd concentration occurs owing to the weighted effective charge carrier mass, as

there is no dopant impact on the free carrier concentration [2]. In fact, the plasma

frequency is inversely proportional to the effective electron mass. This feature, together

with the enhanced plasmon-phonon coupling with Nd doping, affords us a better insight

into the transport properties of crystalline nanoceria based on the infrared-derived optical

conductivity [48].

4. Electron spin resonance
4.1 Short introduction to electron spin resonance technique

ESR exemplifies a very sensitive and informative experimental technique, based on the use

of magnetic field, which continues to find countless applications not only in solid state and

Figure 2.6
Infrared reflectivity spectra of undoped and Nd-doped CeO2�y nanopowders involving the two
theoretical fits based on coupled plasmon-phonon and decoupled plasmon-phonon model. The
credits for the figure are given to M. Radovi�c, Z. Doh�cevi�c-Mitrovi�c, N. Paunovi�c, S. Bo�skovi�c, N. Tomi�c, N.
Tadi�c, I. Bel�ca, Infrared study of plasmon-phonon coupling in pure and Nd-doped CeO2�y nanocrystals, J.
Phys. D Appl. Phys. 48 (2015) 065301e065306. https://doi.org/10.1088/0022-3727/48/6/065301.
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nano, but also in biomedical and environmental sciences. By means of ESR spectroscopy,

one is able to directly probe electron spin response at resonance that certainly makes ESR

as one of the most powerful probe to investigate magnetic properties in various compounds.

More interestingly, ESR stands for both noninvasive and contactless tool with ability to

analyze accurately the nature and dynamics of charge carriers in conductive systems no

matter how their geometry welcomes electrical leads and contacts in an electrical circuit.

Familiarly known as CESR in abbreviated term, conduction electron spin resonance has

captivated much scientific attention for its capacity to measure the electrical conductivity

of systems from bulk over microsized down to nanoscopic conducting materials. In the

actual fact, in the conducting systems, the free electron motion exerting eddy current

leaves an impact upon the recorded signal at resonance through asymmetry as the definite

signature. This was originally recognized by Feher and Kip [56], Dyson [57] who put

forward that asymmetric CESR lineshapes originate as linear combinations due to the two

facts: (1) the attenuation of the AC field through the skin depth and (2) the capability of

itinerant electrons to diffuse backward and forward through the skin depth region in many

instances between consecutive spin flips that is only critical to transmission-based CESR

techniques. In the case of transmissive CESR, magnetization can penetrate far deeply into

metals unlike the AC magnetic field. This gives an extra contribution to enhancing the

asymmetry of the signals at resonance [58,59].

Dating back to the 19500s, Freeman John Dyson is the first in the field to be credited with

fully deriving the asymmetric CESR profiles. For the obvious reasons, such CESR lines

are referred in literature to as Dysonians of which asymmetry extent is oftentimes

quantified using A=B ratio (see the inset in Fig. 2.8), as common signature of metallicity

in CESR experiments.

Figure 2.7
Evolution of the plasma frequency with the increased Nd dopant concentration as inferred from
the two models: coupled plasmon-phonon and decoupled plasmon-phonon. The credits for the

figure are given to M. Radovi�c, Z. Doh�cevi�c-Mitrovi�c, N. Paunovi�c, S. Bo�skovi�c, N. Tomi�c, N. Tadi�c, I. Bel�ca,
Infrared study of plasmon-phonon coupling in pure and Nd-doped CeO2�y nanocrystals, J. Phys. D Appl. Phys.

48 (2015) 065301e065306. https://doi.org/10.1088/0022-3727/48/6/065301.
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As with CESR operating in the reflection mode, Chapman et al. [61] developed an

approach based on Dyson’s theory to grasp both on- and off-resonance signal for the

various crystal shapes, such as flat plates, long cylinders, and spheres. This allows the

prediction of the asymmetric nature of CESR absorption profiles depending on geometry

of the conducting samples with different size. Furthermore, Platzman and Wolf [62]

examined spin waves excitations at resonance in paramagnetic metals that are described

within the frame of Fermi-liquid theory. Their extended theory boils down to Dyson’s in

the limit of short momentum relaxation times. Dyson’s theory was additionally generalized

to involve various shapes of conducting crystals at desirable resonant magnetic field

directions [63e65]. Later on, Kaplan pointed out that there is a substantial discrepancy

between Dyson’s theory and experimental results recorded in CESR based on the

reflection mode [66]. Actually, CESR becomes recoiled rather with electric than magnetic

component of the frequency-dependent electromagnetic field. The component of electric

field is known to get easily coupled with the free electron momentum across the surface

via relativistic spin-orbit interaction. This fact finds its application in the quantum

mechanical density matrix method, which ultimately brings about the rather general form

of CESR signal as [67]:

c00ðuÞcosfþ c0ðuÞsinf: (2.22)

Terms c00 and c0 represent the absorptive and dispersive parts of the CESR signal. The

magnitudes of their contributions are measured with cosf and sinf, respectively, both of

which disappear in the limit of highly conductive samples, where f is the signal phase.

Eq. (2.22) does represent a particular manifestation of Dysonian, which falls into the range

of the so-called “NMR limit” [68,69]. In that case, the electron diffusion rate is

considerably slower as compared to the spin relaxation rate, and there is no need to

consider other limits so as to reasonably infer CESR spectra of usual metallic samples.

Spin dynamics itself as regards this case can lead to nothing but Lorentzian-profiled

absorptions (c00), unlike the situations with reduced dimensionality or motionally narrowed

signals [70,71].

In a recent CESR study [60], the authors have favored Kaplan’s approach, made for

analyzing the CESR lineshape, to impart a valuable piece of information on the

conductivity of samples with different geometries. Key lengths and points of CESR lines,

necessary for simplification of a fitting procedure of CESR lineshape, have been

established in this account to analytically derive, as well as, grasp the geometry

independent asymmetry ratio limit A=B/ð5þ3
ffiffiffi
3

p Þ=4, encountered in literature as

universal 2.55 limit, when the CESR is carried out on extremely conducting samples. A= B

ratio value markedly evolves once nano- or microsized metallic samples start to

agglomerate into larger ones that makes the CESR technique especially helpful in
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monitoring the extent to which the clustering takes place [72,73]. Moreover, in Ref. [60],

the phase dependence of the asymmetry ratio A=B is given as

A=B¼

�
1þ 2cos

2f

3

��
3cos

�
p

6
� f

3

�
þ sinf

�
4cos

�
p

6
� f

3

��
1þ sin

�
p

6
� 2f

3

��2
; (2.23)

which can be further employed to relate A=B with the conductivity. Namely, Chapman

et al. [61] introduced the parameter hhd=d, where d represents the characteristic length

od the sample (thickness or diameter), while d is the skin depth at given resonant

frequency. It is exactly this quantity that is in correlation with the sample conductivity.

The absorptive and dispersive parts of the CESR signal in Ref. [61] are respectively xðhÞ
and yðhÞ so that yðhÞ=xðhÞ exactly corresponds to tanf in Ref. [60]. According to

Ref. [61], xðhÞ and yðhÞ for the three relevant geometries look like

Plate0

8>><>>:
xðhÞ ¼ sinhðhÞ þ sinðhÞ

2hðcoshðhÞ þ cosðhÞÞ þ
1þ coshðhÞcosðhÞ
ðcoshðhÞ þ cosðhÞÞ2;

yðhÞ ¼ sinhðhÞ � sinðhÞ
2hðcoshðhÞ þ cosðhÞÞ þ

sinhðhÞsinðhÞ
ðcoshðhÞ þ cosðhÞÞ2:

(2.24)

Cylinder0

8>>>>>>>>>>><>>>>>>>>>>>:

xðhÞ ¼ 1� 2ðBerðwÞBer 0ðwÞ þ BeiðwÞBei 0ðwÞÞðBerðwÞBei 0ðwÞ � Ber 0ðwÞBeiðwÞÞ�
Ber2ðwÞ þ Bei2ðwÞ�2 ;

yðhÞ ¼
�
Ber2ðwÞ � Bei2ðwÞ��Bei 02ðwÞ � Ber 02ðwÞ�� 4BerðwÞBeiðwÞBer 0ðwÞBei 0ðwÞ�

Ber2ðwÞ þ Bei2ðwÞ�2 ;

where whh=
ffiffiffi
2

p
:

(2.25)

Sphere0

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

4

9
xðhÞ ¼ 8þ h4

h4
�

8ðsinhðhÞ þ sinðhÞÞ
h3ðcoshðhÞ � cosðhÞÞ þ

8sinhðhÞsinðhÞ
h2ðcoshðhÞ � cosðhÞÞ2 þ

sinhðhÞ � sinðhÞ
hðcoshðhÞ � cosðhÞÞ �

sinh2ðhÞ � sin2ðhÞ
ðcoshðhÞ � cosðhÞÞ2;

4

9
yðhÞ ¼

8ðsinhðhÞ � sinðhÞÞ
h3ðcoshðhÞ � cosðhÞÞ �

4
�
sinh2ðhÞ � sin2ðhÞ�

h2ðcoshðhÞ � cosðhÞÞ2 þ
sinhðhÞ þ sinðhÞ

hðcoshðhÞ � cosðhÞÞ �
2sinhðhÞsinðhÞ

ðcoshðhÞ � cosðhÞÞ2:

(2.26)
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This set of the three dependencies allows us to compute A=B versus logh as is presented in

Fig. 2.8. Oftentimes, A=B can be expended in the form of the linear approximation with

respect to either h or is proportional to the conductivity of the probed spins. The latter

approximation works well in the case of the carbon nanotubes [3] of which CESR-based

charge carrier transport is going to be discussed in detail throughout the upcoming section.

4.2 Carbon nanotubes

As a building brick that takes fascinating variety of forms such as diamond, fossil fuels,

and graphite, together with innumerable compounds derived from it, carbon stands for

one of the most impressive elements in the periodic table. Increased focus of renewed

scientific interest in carbon has stepped into the realm of novel carbon-based materials,

specifically known as the carbon allotropes at nanoscopic level, such as carbon

nanotubes. These were first discovered as multiwalled forms by Iijima in 1991 [74]

initiating the golden era of the physics and chemistry of carbon nanostructures. Carbon

nanotubes are distinguished by their outstanding electronic, mechanical, and transport

properties revealing uncorrelated (semi)conducting nature of the tubes in relation to the

curvature and chirality. They also prove suitable for various applications which spam

from the use as light and electron emitters [75] up to optical biosensors for life sciences

and biomedicine [76].
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Figure 2.8
Asymmetry ratio A=B dependence on logðhÞ regarding the three relevant geometries: infinite

plate (black), long cylinder (dark red), and sphere (dark blue). All the three curves converge to
the asymptotic A=B ratio of ð5þ3

ffiffiffi
3

p Þ=4 at h/N. The inset represents graphically the A= B
ratio in an arbitrarily selected CESR line. The figure is adopted from D.M. Djoki�c, D. Stepanenko, Z.
Doh�cevi�c-Mitrovi�c, Extreme conduction electron spin resonance: A/B/(5þ3O3)/4, the universal limit of
lineshape asymmetry ratio, J. Magn. Magn. Mater. 491 (2019) 165616. https://doi.org/10.1016/j.

jmmm.2019.165616.
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Even with the aid of nanoscaled technologies, making ideal electric contacts to adequately

probe nanotube conductivity remains a perplexing puzzle. Electron backscattering,

imbalanced injection of incident electron modes, and high-ohmic contact resistance are

identified as the chief culprits at minuscule dimensions. However, nanotubes with large

diameters have the added advantage of favoring low-ohmic contact resistance in a

four-probe electric measurement [77]. This made them perfectly suited for the

investigation of quantum interference caused by the AharonoveBohm effect specific by

the pronounced magneto-resistance oscillations as a function of magnetic flux [78].

Despite their short diameters, transport electric properties of multiwalled nanotubes

oftentimes remain consistent with theoretical models used to describe disordered

conductors in 2D. This might be explained by the fact that the electron wavelength is quite

smaller than the nanotube diameter [79]. On the other hand side, one-dimensional essence

of carbon nanotubes becomes already evident through specific heat and thermal lattice

conductivity measurements since the phonon wavelength exceeds typical nanotube

diameters [80], unlike the before-mentioned electron wavelength. Moreover, according to

Ref. [81], it has been demonstrated that the electric transport in single walled carbon

nanotubes exhibit a dependence in agreement with Luttinger liquid models.

Temperature and power-dependent CESR on an ensemble of metallic SWCNTs have been

performed to infer their transport properties based on the insights into the spin dynamics

[3]. The powder-form samples comprised acid-purified laser-oven SWCNTs which were

prepared using the standardized annealing procedure, while the related CESR spectra were

recorded as a function of temperature from 3:4 K to the ambient temperature at the

X-band spectrometer. To yield a rather detailed insight into the transport mechanism, the

authors of Ref. [3] studied the temperature evolution of the asymmetry Dysonian line

shape parameter, ahA=B, which is to the first order approximation proportional to the

conductance of the probed electron spins. These can relax by interaction with itinerant

electrons that are present in metallic SWCNTs. In addition, the spin dephasing rate at

resonance narrows with increasing temperature, which is a signature of the motional

narrowing, a phenomenon that is particular to metallic systems.

Temperature dependence of the natural logarithm of conductivity, lnðsÞ which in this case

boils down to lnðaÞ, is oftentimes plotted versus n-th root of inverse temperature [41].

Exponent n provides information on the charge carrier transport mechanism and when n

approaches 1=4, it leaves a hallmark of 3D Mott VRH transport mechanism [37].

As shown in Fig. 2.9, the Dysonian asymmetry parameter tends to follow a three-

dimensional variable-range hopping behavior at low T. From the scaling relationships in

Eq. (2.12), the localization length of the electronic wave function, x, is roughly estimated

to be w100 nm, whereas the DOSs gðεFÞ amounts w1019 localized states per (eV � cm3)
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around the Fermi energy. The traditional four-point probe transport measurements on the

similarly prepared SWCNT samples [3] have, to some extent, corroborated the present

picture of the CESR observed 3D VRH at low T.

As with nanoscopic systems such as SWCNTs, one can even venture to state that the VRH

conduction mechanism, owing to the localized edge/surface states positioned around Fermi

level, may extend even over a wide range of temperatures [1]. At high temperatures, the

conduction mechanism in bulk systems commonly runs intrinsically via thermal activation

through conduction bands. On the other hand side, there are, as a rule, defect states across

the nanotube surface, effectively making its pristine length quite short and comparable to

nanoscaled dimensions (Fig. 2.10). In this case, the overlaps between the orbitals decrease

to cause the bands to become less dense. This leads to the band splittings to eventually

open up wide gaps at rather high energies. Bands that are high in energy have, therefore,

tendency to fade away so does the conduction band, as contrary to an ideally pristine

SWCNT. It is thus reasonable to adopt that VRH mechanisms may apply up to somewhat

higher temperatures in defected nanotubes. Certainly, the intrinsic thermally activated

transport via conduction band can be ignored comparing to the VRH due to the evanescent

DOSs, as is given in Fig. 2.10.

5. Concluding remarks

In summary, noncontact measurements of transport have been evidenced to offer various

advantages to studying novel nanoscopic materials such as: multiferroic crystalline BiFeO3

nanoparticles, doped nanocrystalline CeO2 used for fuel cell applications, as well as,

Figure 2.9
Natural logarithm of the asymmetry parameter, ahA=B, graphed versus the fourth root of

inverse temperature. The logarithm is found to undergo the 3D VRH mechanism. The data are
taken from W.D. Rice, R.T. Weber, P. Nikolaev, S. Arepalli, V. Berka, A.L. Tsai, J. Kono, Spin relaxation

times of single-wall carbon nanotubes, Phys. Rev. B 88 (2013) 041401e041405. https://doi.org/10.1103/
PhysRevB.88.041401.
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single walled carbon nanotubes exploited for molecular electronics and spintronics.

The transport properties of these novel multifunctional materials have been reviewed in

this chapter in the light of noninvasive spectroscopic techniques which involve: RS, IRR,

and ESR. Through brief introductions made at the beginning of each section, these three

contactless spectroscopic tools have been described in detail.
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Figure 2.10
Plots of the electronic density of states versus energy for an ideally pristine (upper part) and a
defected semiconducting SWCNT (lower part), computed using the tight-binding model. The

electronic states of the defects forming the effective SWCNT edges are given in green circles. They
are distributed around Fermi level at zero energy above which the DOS perishes gradually as the

energy goes higher.
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